Segmenting Data with Python: Identifying Valid Triggers in a Pandas DataFrame
Based on the provided solution, here is a Python function that can be used to identify segments in a pandas DataFrame based on the conditions specified:
import pandas as pd
def identify_segments(df):
"""
Identify segments in a DataFrame based on conditions.
Parameters:
df (pd.DataFrame): The input DataFrame with conditions 'new_if_6_zero' and 'end_if_zero1'.
Returns:
valid_trigger (pd.Series): A boolean Series indicating which segments satisfy the conditions.
outcome (pd.DataFrame): The segments that satisfy the conditions, indexed by 'x2' and 'x4'.
"""
# Create columns 'x1', 'x2', 'x3', 'x4'
df['x1'] = df['new_if_6_zero']==0
df['x2'] = df['x1'].diff().fillna(True).cumsum()
df['x3'] = (df['end_if_zero1']==0) & (df['end_if_zero2']==0)
df['x4'] = df['x3'].diff().fillna(True).cumsum()
# Create a boolean Series 'trigger' indicating which segments satisfy the conditions
trigger = df.groupby(['x2', 'x4']).agg({'x1': 'sum', 'x3': 'any'}).rename(columns={'x1': 'start_trigger', 'x3': 'end_trigger'})
valid_trigger = trigger[(trigger['start_trigger'].shift()>=6) & (trigger['end_trigger'].shift(-1))]
# Create the segments that satisfy the conditions
outcome = df.set_index(['x2', 'x4']).loc[valid_trigger.index]
return valid_trigger, outcome
# Example usage:
df_example = pd.DataFrame({
'new_if_6_zero': [0., 2, 0, 0, 0, 0, 0, 0, 3, 2, 4, 5],
'end_if_zero1': [3., 0, 4, 5, 4, 3, 5, 6, 6, 1, 0, 2],
'end_if_zero2': [3., 0, 4, 5, 4, 3, 5, 6, 6, 0, 0, 1]
})
valid_trigger, outcome = identify_segments(df_example)
print(valid_trigger)
print(outcome)
This code defines a function identify_segments that takes a pandas DataFrame as input and returns two boolean Series: valid_trigger, indicating which segments satisfy the conditions; and outcome, the segments themselves. The example usage demonstrates how to apply this function to an example DataFrame.
Last modified on 2023-07-25